
12

Direct Lattice Simple Cubic Body-Centred

Cubic

Face-Centred

Cubic

Reciprocal

Lattice

(cube lattice

parameter)

Simple Cubic

(2!/a)

Face-Centred Cubic

(4!/a)

Body-Centred Cubic

(4!/a)

Planes, spacing (100) a No No

(110) a/"2 Yes No

(111) a/"3 No Yes

(200) a/2 Yes Yes

(210) a/"5 No No

(211) a/"6 Yes No

(220) a/"8 Yes Yes

(221) a/3 No No

(300) a/3 No No

(310) a/"10 Yes No

(311) a/"11 No Yes

(222) a/"12 Yes Yes

(320) a/"13 No No

(321) a/"14 Yes No

(400) a/"16 Yes Yes

Rule: All h, k, l Sum (h + k + l) even h, k, l all odd or all

even

Ratio of sines

of Bragg angles

1:"2:"3:2:"5:"6:

"8:...

1:"2:"3:2:"5:"6:"7:

"8:...

1:2/"3:"8/"3:...
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10-3 Indexing patterns of cubic crystals. A cubic crystal gives dif-

fraction lines whose sin
2
6 values satisfy the following equation, obtained

by combining the Bragg law with the plane-spacing equation for the cubic

system:

sin
2
B sin

2
B X

2

Since the sum s = (h? + k2 + I
2
) is always integral and A2

/4a
2

is a con-

stant for any one pattern, the problem of indexing the pattern of a cubic

substance is one of finding a set of integers s which will yield a constant

quotient when divided one by one into the observed sin
2
6 values. (Certain

integers, such as 7, 15, 23, 28, 31, etc., are impossible because they cannot
be formed by the sum of three squared integers.) Once the proper integers
s are found, the indices hkl of each line can be written down by inspection
or from the tabulation in Appendix 6.

The proper integers s can be determined by means of the C and D scales

of an ordinary slide rule, which permit simultaneous division of one set of

numbers by another, if the quotient is constant. Pencil marks correspond-

ing to the sin
2

values of the first five or six lines on the pattern are placed
on the D scale. A single setting of the C scale is then sought which will

bring a set of integers on the C scale into coincidence with all the pencil
marks on the D scale. Because of the systematic errors mentioned earlier,

these coincidences are never exact, but they are usually close enough to per-
mit selection of the proper integer, particularly if the C scale is shifted

slightly from line to line to compensate for the systematic errors in sin
2

6. If

a set of integers satisfying Eq. (10-2) cannot be found, then the substance

involved does not belong to the cubic system, and other possibilities (tetrag-

onal, hexagonal, etc.) must be explored.

The following example will illustrate the steps involved in indexing the

pattern of a cubic substance and finding its lattice parameter. In this

particular example, Cu Ka radiation was used and eight diffraction lines

were observed. Their sin
2

values are listed in the second column of

Table 10-1. By means of a slide rule, the integers s listed in the third

column were found to produce the reasonably constant quotients listed in

the fourth column, when divided into the observed sin
2

values. The
fifth column lists the lattice parameter calculated from each line position,
and the sixth column gives the Miller indices of each line. The systematic
error in sin

2
6 shows up as a gradual decrease in the value of X2/4a

2
,
and a

gradual increase in the value of a, as 8 increases. We shall find in Chap. 11

that the systematic error decreases as increases; therefore we can select

the value of a for the highest-angle line, namely, 3.62A, as being the most
accurate of those listed. Our analysis of line positions therefore leads to



302 THE DETERMINATION OF CRYSTAL STRUCTURE [CHAP. 10

TABLE 10-1

the conclusion that the substance involved, copper in this case, is cubic in

structure with a lattice parameter of 3.62A.

We can also determine the Bravais lattice of the specimen by observing
which lines are present and which absent. Examination of the sixth col-

umn of Table 10-1 shows that all lines which have mixed odd and even

indices, such as 100, 110, etc., are absent from the pattern. Reference to

the rules relating Bravais lattices to observed and absent reflections, given
in Table 4-1, shows that the Bravais lattice of this specimen is face-

centered. We now have certain information about the arrangement of

atoms within the unit cell, and it should be noted that we have had to make
use of observed line intensities in order to obtain this information. In

this particular case, the observation consisted simply in noting which

lines had zero intensity.

Each of the four common cubic lattice types is recognizable by a charac-

teristic sequence of diffraction lines, and these in turn may be described

by their sequential s values:

Simple cubic: 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, ...

Body-centered cubic: 2, 4, 6, 8, 10, 12, 14, 16, ...

Face-centered cubic: 3, 4, 8, 11, 12, 16, ...

Diamond cubic: 3, 8, 11, 16, ...

The same information is tabulated in Appendix 6 and shown graphically
in Fig. 10-2, in the form of calculated diffraction patterns. The calcula-

tions are made for Cu Ka radiation and a lattice parameter a of 3.50A.

The positions of all the diffraction lines which would be formed under
these conditions are indicated as they would appear on a film or chart of

the length shown. (For comparative purposes, the pattern of a hexagonal

close-packed structure is also illustrated, since this structure is frequently



FIG. 10-2. Calculated diffraction patterns for various lattices, s ti
2 + k2 + I

2
.

encountered among metals and alloys. The line positions are calculated

for CuKa radiation, a = 2.50A, and c/a =
1.633, which corresponds to

the close packing of spheres.)

Powder patterns of cubic substances can usually be distinguished at a

glance from those of noncubic substances, since the latter patterns nor-
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mally contain many more lines. In addition, the Bravais lattice can usu-

ally be identified by inspection: there is an almost regular sequence of

lines in simple cubic and body-centered cubic patterns, but the former

contains almost twice as many lines, while a face-centered cubic pattern

is characterized by a pair of lines, followed by a single line, followed by a

pair, another single line, etc.

The problem of indexing a cubic pattern is of course very much sim-

plified if the substance involved is known to be cubic and if the lattice

parameter is also known. The simplest procedure then is to calculate the

value of (\
2
/4a

2
) and divide this value into the observed sin

2
6 values to

obtain the value of s for each line.

There is one difficulty that may arise in the interpretation of cubic powder pat-

terns, and that is due to a possible ambiguity between simple cubic and body-

centered cubic patterns. There is a regular sequence of lines in both patterns up

to the sixth line; the sequence then continues regularly in body-centered cubic

patterns, but is interrupted in simple cubic patterns since s = 7 is impossible.

Therefore, if X is so large, or a so small, that six lines or less appear on the pattern,

the two Bravais lattices are indistinguishable. For example, suppose that the

substance involved is actually body-centered cubic but the investigator mistakenly

indexes it as simple cubic, assigning the value s = 1 to the first line, s = 2 to the

second line, etc. He thus obtains a value of X 2
/4a

2 twice as large as the true one,

and a value of a which is l/\/2 times the true one. This sort of difficulty can be

avoided simply by choosing a wavelength short enough to produce at least seven

lines on the pattern.

10-4 Indexing patterns of noncubic crystals (graphical methods). The

problem of indexing powder patterns becomes more difficult as the number

of unknown parameters increases. There is only one unknown parameter

for cubic crystals, the cell edge a, but noncubic crystals have two or more,

and special graphical and analytical techniques have had to be devised in

order to index the patterns of such crystals.

The tetragonal system will be considered first. The plane-spacing equa-

tion for this system involves two unknown parameters, a and c:

I h
2 + k

2
I
2

-5- + T (10-3)
d2 a

2
c
2

This may be rewritten in the form

i
-![(* + *") + _

d2 a2 L (c/o)




